skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Skobe, Hannah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Strong gravitational lenses with two background sources at widely separated redshifts are a promising independent probe of cosmological parameters. We can use these systems, known as double-source-plane lenses (DSPLs), to measure the ratio (β) of angular-diameter distances of the sources, which is sensitive to the matter density (Ωm) and the equation-of-state parameter for dark-energy (w). However, DSPLs are rare and require high-resolution imaging and spectroscopy for detection, lens modeling, and measuringβ. Here, we report only the second DSPL ever used to measure cosmological parameters. We model the DSPLAGEL150745+052256 from the ASTRO 3D Galaxy Evolution with Lenses (AGEL) survey using Hubble Space Telescope/Wide-Field Camera 3 imaging and Keck Cosmic Web Imager spectroscopy. The spectroscopic redshifts for the deflector and two sources inAGEL1507 arezdefl= 0.594,zS1 =  2.163, andzS2= 2.591. We measure a stellar velocity dispersion ofσobs = 109 ± 27 km s−1for the nearer source (S1). Usingσobsfor the main deflector (from literature) and S1, we test the robustness of our DSPL model. We measure β = 0.95 3 0.010 + 0.008 forAGEL1507 and infer Ωm = 0.3 3 0.23 + 0.38 for ΛCDM cosmology. CombiningAGEL1507 with the published model of the Jackpot lens improves the precision on Ωm(ΛCDM) andw(wCDM) by ∼10%. The inclusion of DSPLs significantly improves the constraints when combined with Planck’s cosmic microwave background observations, enhancing the precision onwby 30%. This paper demonstrates the potential constraining power of DSPLs and their complementarity to other standard cosmological probes. Tighter future constraints from larger DSPL samples discovered from ongoing and forthcoming large-area sky surveys would provide insights into the nature of dark energy. 
    more » « less
    Free, publicly-accessible full text available September 16, 2026
  2. We study the spatially resolved outflow properties of CSWA13, an intermediate-mass (M* = 109M), gravitationally lensed star-forming galaxy atz= 1.87. We use Keck/KCWI to map outflows in multiple rest-frame UV interstellar medium (ISM) absorption lines, along with fluorescent Siii* emission, and nebular emission from Ciii] tracing the local systemic velocity. The spatial structure of the outflow velocity mirrors that of the nebular kinematics, which we interpret to be a signature of a young galactic wind that is pressurizing the ISM of the galaxy but is yet to burst out. From the radial extent of Siii* emission, we estimate that the outflow is largely encapsulated within 3.5 kpc. We explore the geometry (e.g., patchiness) of the outflow by measuring the covering fraction at different velocities, finding that the maximum covering fraction is at velocitiesv ≃ −150 km s−1. Using the outflow velocity (vout), radius (R), column density (N), and solid angle (Ω) based on the covering fraction, we measure the mass-loss rate log m ̇ out / ( M yr 1 ) = 1.73 ± 0.23 and mass loading factor log η = 0.04 ± 0.34 for the low-ionization outflowing gas in this galaxy. These values are relatively large and the bulk of the outflowing gas is moving with speeds less than the escape velocity of the galaxy halo, suggesting that the majority of the outflowing mass will remain in the circumgalactic medium and/or recycle back into the galaxy. The results support a picture of high outflow rates transporting mass and metals into the inner circumgalactic medium, providing the gas reservoir for future star formation. 
    more » « less
    Free, publicly-accessible full text available March 3, 2026
  3. While quiescent galaxies have comparable amounts of cool gas in their outer circumgalactic medium (CGM) compared to star-forming galaxies, they have significantly less interstellar gas. However, open questions remain on the processes causing galaxies to stop forming stars and stay quiescent. Theories suggest dynamical interactions with the hot corona prevent cool gas from reaching the galaxy, therefore predicting the inner regions of quiescent galaxy CGMs are devoid of cool gas. However, there is a lack of understanding of the inner regions of CGMs due to the lack of spatial information in quasar-sightline methods. We present integral-field spectroscopy probing 10–20 kpc (2.4–4.8 Re) around a massive quiescent galaxy using a gravitationally lensed star-forming galaxy. We detect absorption from Magnesium (MgII) implying large amounts of cool atomic gas (108.4–109.3 M⊙ with T~104 Kelvin), in comparable amounts to star-forming galaxies. Lens modeling of Hubble imaging also reveals a diffuse asymmetric component of significant mass consistent with the spatial extent of the MgII absorption, and offset from the galaxy light profile. This study demonstrates the power of galaxy-scale gravitational lenses to not only probe the gas around galaxies, but to also independently probe the mass of the CGM due to it's gravitational effect. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Abstract Observed evolution of the total mass distribution with redshift is crucial to testing galaxy evolution theories. To measure the total mass distribution, strong gravitational lenses complement the resolved dynamical observations that are currently limited toz≲ 0.5. Here we present the lens models for a pilot sample of seven galaxy-scale lenses from theASTRO3DGalaxy Evolution with Lenses (AGEL) survey. TheAGELlenses, modeled using HST/WFC3-F140W images with Gravitational Lens Efficient Explorer (GLEE) software, have deflector redshifts in the range 0.3 <zdefl< 0.9. Assuming a power-law density profile with slopeγ, we measure the total density profile for the deflector galaxies via lens modeling. We also measure the stellar velocity dispersions (σobs) for four lenses and obtainσobsfromSDSS-BOSSfor the remaining lenses to test our lens models by comparing observed and model-predicted velocity dispersions. For the sevenAGELlenses, we measure an average density profile slope of −1.95 ± 0.09 and aγ–zrelation that does not evolve with redshift atz< 1. Although our result is consistent with some observations and simulations, it differs from other studies atz< 1 that suggest theγ–zrelation evolves with redshift. The apparent conflicts among observations and simulations may be due to a combination of (1) systematics in the lensing and dynamical modeling; (2) challenges in comparing observations with simulations; and (3) assuming a simple power law for the total mass distribution. By providing more lenses atzdefl> 0.5, theAGELsurvey will provide stronger constraints on whether the mass profiles evolve with redshift as predicted by current theoretical models. 
    more » « less
  5. Abstract Gravitational lenses can magnify distant galaxies, allowing us to discover and characterize the stellar populations of intrinsically faint, quiescent galaxies that are otherwise extremely difficult to directly observe at high redshift from ground-based telescopes. Here, we present the spectral analysis of two lensed, quiescent galaxies atz≳ 1 discovered by theASTRO 3D Galaxy Evolution with Lensessurvey:AGEL1323 (M*∼ 1011.1M,z= 1.016,μ∼ 14.6) andAGEL0014 (M*∼ 1011.5M,z= 1.374,μ∼ 4.3). We measured the age, [Fe/H], and [Mg/Fe] of the two lensed galaxies using deep, rest-frame-optical spectra (S/N ≳40 Å−1) obtained on the Keck I telescope. The ages ofAGEL1323 andAGEL0014 are 5.6 0.8 + 0.8 Gyr and 3.1 0.3 + 0.8 Gyr, respectively, indicating that most of the stars in the galaxies were formed less than 2 Gyr after the Big Bang. Compared to nearby quiescent galaxies of similar masses, the lensed galaxies have lower [Fe/H] and [Mg/H]. Surprisingly, the two galaxies have comparable [Mg/Fe] to similar-mass galaxies at lower redshifts, despite their old ages. Using a simple analytic chemical evolution model connecting the instantaneously recycled element Mg with the mass-loading factors of outflows averaged over the entire star formation history, we found that the lensed galaxies may have experienced enhanced outflows during their star formation compared to lower-redshift galaxies, which may explain why they quenched early. 
    more » « less